If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+26-45=0
We add all the numbers together, and all the variables
8x^2-19=0
a = 8; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·8·(-19)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{38}}{2*8}=\frac{0-4\sqrt{38}}{16} =-\frac{4\sqrt{38}}{16} =-\frac{\sqrt{38}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{38}}{2*8}=\frac{0+4\sqrt{38}}{16} =\frac{4\sqrt{38}}{16} =\frac{\sqrt{38}}{4} $
| 31=4-9c | | 4=-31/3+1/5x | | x+x-24=40 | | 18=p/2+14 | | 3/5k+4=19 | | f/9-7=-2 | | 18 = p2+14 | | -2s-1=3s-7 | | 1/4(4x-8)=9X+4 | | 34+z=14 | | −56n=40 | | 6j-12=-24 | | 15=5+3x | | m3+ 4= 5 | | 2|2x-2|=4 | | m/3+ 4= 5 | | 11d+82=25d-100 | | 9e+4=1413e | | -3d-4=11 | | 12z-79=11z-65 | | 3(12y+24)+72=4(48y-12)-204 | | 1+11x=-9+1 | | 7j-5=13j-83 | | 6b-16=-10 | | 18=x-12 | | g=11+-13 | | 3x+4(2x-1)=29 | | 5(3x-2)=5x+3 | | 41=36+x | | 4r-55=2r+31 | | 7x+4(3-5)=18 | | 3.99x+12.25=77.49 |